ESTUDIO DE PRE-FACTIBILIDAD PARA EL APROVECHAMIENTO ENERGÉTICO DE LA BIOMASA DE UNA GRANJA AVÍCOLA EN UN COCINADOR DE MORTALIDAD

JUAN ANDRÉS CORREA PRIETO
ANDERSON JULIÁN MARTÍNEZ REMOLINA
HELIODORO ANDRÉS RIOS MUÑOZ

UNIVERSIDAD AUTÓNOMA DE BUCARAMANGA
FACULTAD DE INGENIERÍAS FISICO-MECÁNICAS
ESPECIALIZACIÓN EN GERENCIA DE RECURSOS ENERGÉTICOS
XX COHORTE
BUCARAMANGA
2015
ESTUDIO DE PRE-FACTIBILIDAD PARA EL APROVECHAMIENTO ENERGÉTICO DE LA BIOMASA DE UNA GRANJA AVÍCOLA EN UN COCINADOR DE MORTALIDAD

JUAN ANDRÉS CORREA PRIETO
ANDERSON JULIÁN MARTÍNEZ REMOLINA
HELIODORO ANDRÉS RIOS MUÑOZ

Director:
Ph.D YECID ALFONSO MUÑOZ MALDONADO

UNIVERSIDAD AUTÓNOMA DE BUCARAMANGA
FACULTAD DE INGENIERÍAS FISICO-MECÁNICAS
ESPECIALIZACIÓN EN GERENCIA DE RECURSOS ENERGÉTICOS
XX COHORTE
BUCARAMANGA
2015
TABLA DE CONTENIDO

INTRODUCCIÓN.. 7
OBJETIVOS .. 9
1. MARCO CONTEXTUAL .. 10

 1.1 CONTEXTUALIZACIÓN SECTOR AVÍCOLA Y RESEÑA DE LA FINCA BELLAVISTA 10
 1.1.1 Caracterización y descripción del sector avícola de Colombia 10
 1.1.2 Reseña histórica Incubadora de Santander- Granja Bellavista horizontes 15

 1.2 PRODUCCIÓN DE BIOGÁS .. 20
 1.2.1 Biogás ... 21
 1.2.2 OBTENCIÓN DEL BIOGÁS: Digestión Anaerobia .. 22

 1.3 BIODIGESTORES .. 24
2. MARCO REGULATORIO Y AMBIENTAL ... 32

 2.1 METODOLOGÍA PROPUESTA PARA EL MANEJO AMBIENTAL 34
3. ESTUDIO TÉCNICO DEL PROYECTO .. 39

 3.1 REQUERIMIENTOS ENERGÉTICOS DE LA GRANJA ... 39
 3.2 DISEÑO DEL BIODIGESTOR .. 40
4. ESTUDIO FINANCIERO DEL PROYECTO .. 48

 4.1 INVERSIÓN .. 48
 4.2 EVALUACIÓN FINANCIERA DEL PROYECTO ... 50
 4.3 SENSIBILIDAD FINANCIERA DEL PROYECTO ... 54
CONCLUSIONES .. 56
RECOMENDACIONES ... 57
BIBLIOGRAFÍA .. 58
ANEXOS ... 60
LISTA DE FIGURAS

Figura 1. Granjas avícolas en Colombia ... 14
Figura 2. Granja Avícola – Gallina de Jaula ... 19
Figura 3. Etapas del proceso de digestión anaerobia ... 22
Figura 4. Biodigestor de Cúpula Fija (12) ... 28
Figura 5. Biodigestor de Campana Flotante (12) .. 29
Figura 6. Biodigestor de Estructura Flexible (12) ... 30
Figura 7. Sistema de producción de Biogás en la Granja 35
Figura 8. Switching Value – Costos GLP ... 54
LISTA DE TABLAS

Tabla 1. Producción de carne de pollo – Tendencias Avícolas Mundiales 12
Tabla 2. Registro de Granjas Totales en Colombia (2) .. 13
Tabla 3. Composición aproximada del biogás (5) .. 21
Tabla 4. Normativa Jurídica .. 32
Tabla 5. Normativa Ambiental ... 32
Tabla 6. Matriz Comparativa de los Biodigestores ... 45
Tabla 7. Tamaño de la Zanja del Biodigestor .. 47
Tabla 8. Inversión Digestor .. 48
Tabla 9. Inversión para la conducción del Biogás ... 49
Tabla 10. Inversión Cocinador ... 49
Tabla 11. Inversión Zanja ... 50
Tabla 12. Variables Financieras – Sin Proyecto ... 51
Tabla 13. Variables Financieras – Con Proyecto ... 52
Tabla 14. Variables Financieras – Con Proyecto y Venta Gallinaza 53
LISTADO DE ANEXOS

Anexo 1. Propuesta Económica Biodigestor ... 60
Anexo 2. Flujo de Caja SIN Proyecto .. 61
Anexo 3. Flujo de Caja CON Proyecto / Reemplazo GLP por Biogás 61
Anexo 4. Flujo de Caja CON Proyecto / Reemplazo GLP por Biogás y Venta de Gallinaza
.. 62
INTRODUCCIÓN

El excesivo uso de los combustibles fósiles del último medio siglo en la era del boom de los hidrocarburos, la masiva actividad agropecuaria y la creciente generación energética para satisfacer las demandas mundiales de la industria, además de alterar o afectar la sostenibilidad en las actividades productivas y económicas de la agricultura, producen significativamente contaminantes físicos y químicos, que generan un impacto negativo en el medio ambiente, como es la producción de gases efecto invernadero. El agotamiento de los combustibles fósiles ha incrementado el interés de producción y uso de biocombustibles a partir de fuentes renovables y es por este motivo que en las últimas décadas se ha avanzado en la investigación de tecnologías para el aprovechamiento energético de la biomasa.

Producto del anterior análisis y sumado al crecimiento de la industria avícola en Colombia más específicamente en Santander, departamento que cuenta con un censo base de 1054 granjas de aves; Industria con una cadena productiva bastante sostenible y de la cual uno de sus subproductos “la gallinaza” que se considera un combustible atractivo para la aplicación de tecnologías termoquímicas debido a su porcentaje de humedad, cuyos valores oscilan entre 56,40 y 75,31%, se desarrolló el estudio de prefactibilidad técnico-financiero para el aprovechamiento energético de la biomasa de una granja avícola en un cocinador de mortalidad.

La Granja avícola requiere del consumo de cilindros de gas propano para ser utilizado en un cocinador de mortalidad de aves que tienen un costo aproximado de $163´895.458. El estudio técnico desarrollado se realizó con el objetivo de reemplazar la totalidad de la demanda de gas propano por biogás producido a partir de gallinaza.
El biogás se genera en un biodigestor con condiciones técnicas y atractivas para los inversionistas a través de la descomposición anaeróbica de la materia orgánica; este proceso se lleva a cabo en un ambiente donde se descompone la materia orgánica, también llamada biomasa, en un entorno con humedad a través de la actividad de microorganismos. En el proceso de descomposición, algunos compuestos orgánicos son transformados a minerales, los cuales pueden ser utilizados fácilmente como fertilizante para cultivos.

Finalmente se determina la viabilidad financiera del proyecto analizando las condiciones técnicas y operativas, las variables claves y tres posibles escenarios apuesta, aplicando las diferentes sensibilidades para obtener niveles de rentabilidad a través de los indicadores financieros TIR y VPN.
OBJETIVOS

Objetivo General

Evaluar la viabilidad técnico-financiera de la generación de energía en una granja avícola a partir del uso de biogás para ser utilizado en el cocinador de mortalidad de la granja.

Objetivos Específicos

- Evaluar financieramente el proyecto.
- Analizar los riesgos y sensibilidades del proyecto.
- Determinar la inversión necesaria para el auto-abastecimiento de energía utilizando biogás en el cocinador de mortalidad.
- Evaluar el impacto ambiental generado por el desarrollo del proyecto.
- Realizar la validación del diseño del biodigestor propuesto en la tesis “Obtención de Biogás a partir de Gallinaza producida en la Granja Bellavista-Horizontes a servicio de la Incubadora de Santander S.A”.

9
1. MARCO CONTEXTUAL

1.1 CONTEXTUALIZACIÓN SECTOR AVÍCOLA Y RESEÑA DE LA FINCA BELLAVISTA

1.1.1 Caracterización y descripción del sector avícola de Colombia

Los orígenes del sector avícola colombiano se remontan aproximadamente a 1940, cuando se empezaron a industrializar las granjas de cría de pollos para el comercio; a partir de entonces ya que no solo se hablaba de la industria del pollo, sino también del huevo y de otros productos derivados de este. Con el transcurso de los años las empresas avícolas invirtieron grandes capitales en la modernización de sus plantas de producción; así consiguieron que sus productos adquieran valor y fueran más competitivos en el mercado colombiano de las carnes, lograron también que los costos bajaran significativamente, y con ellos los precios. La carne de pollo fue ganándole terreno a la bovina, que era la más consumida por los colombianos, hasta el punto de que hoy en día es mayor el consumo per cápita de productos avícolas que de productos derivados de los bovinos. Gracias a este auge de los productos avícolas, que tiende a crecer, en los años noventa se creó la Federación Nacional de Avicultores de Colombia (FENAVI), que protege los intereses del sector e impulsa el desarrollo de esta industria recurriendo, principalmente, a la investigación y a la búsqueda de tecnologías que la hagan más competitiva en los mercados nacionales e internacionales.

El sector avícola colombiano está conformado por más de cincuenta empresas, lo cual demuestra su competitividad en el mercado nacional; pero encontramos que tres de ellas han liderado en tiempos recientes el mercado de comercialización de pollo, a saber: Aviesa Mac Pollo S.A, Pimpollo S.A y Pollos Savicol. Estas
organizaciones han crecido constantemente durante los últimos años y han sido muy importantes en el desarrollo del sector; y por estas razones serán analizadas en este trabajo (1).

Producción y consumo mundial

En la última década el consumo mundial de productos avícolas ha aumentado considerablemente, pues diversos factores hacen de esta una opción atractiva de alimentación entre ellos, sus bajos costos, su riqueza en nutrientes y su sabor. En muchos países el consumo de pollo es masivo, y en algunos es incluso una tradición. Diversas empresas se dedican a su comercialización masiva, y además de satisfacer la demanda interna han incursionado en los mercados internacionales con gran éxito. En sus países de origen estas empresas cuentan con el apoyo del Estado, que es fundamental para el desarrollo de cualquier industria, y lo retribuyen dando un impulso a las economías nacionales. Otro producto propio de esta industria es el huevo, un alimento con gran cantidad de nutrientes que ayuda al desarrollo de las células del cuerpo humano, y que es considerado como uno de los alimentos más completos que ofrece la naturaleza. Un aspecto a destacar es su bajo costo en el mercado, que lo hace fácilmente accesible a los consumidores. (1)

La siguiente tabla muestra la evolución y crecimiento de la producción de carne de pollo por continentes a nivel mundial en los últimos 15 años, uno de los principales productos del sector avícola, el cual creció un 62,05%.
La producción y el consumo de productos derivados del pollo han venido creciendo considerablemente en Colombia en los últimos años. Sumada al consumo interno, la apertura de los mercados internacionales ha sido determinante para el crecimiento de la producción. El sector avícola ha adquirido un papel muy importante en la economía nacional, incluso en términos geográficos, pues está presente en gran parte del territorio colombiano. Sin embargo, se encuentra con mayor densidad en el centro del país, y especialmente en las principales ciudades de las cordilleras. En el departamento de Cundinamarca se encuentran la mayoría de estas granjas y le siguen los departamentos de Santander, Valle del Cauca y Antioquia. (1)

En Colombia, la población promedio de aves entre ponedoras, engorde y reproducción es de 155'241.504 cabezas acuerdo a la capacidad de
encasetamiento a nivel de granjas según el programa técnico de FENAVI, las cuales generan una cantidad de biomasa (gallinaza-pollinaza) de 3’792.908 ton/año, encontrándose Santander como una de las regiones que mayor concentración de cabezas/año, un promedio de 38.673.171 cabezas representando el 24,91% de la capacidad Nacional, solo superado por Cundinamarca. (2)

Tabla 2. Registro de Granjas Totales en Colombia (2)

<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th># Granjas</th>
<th>Capacidad de Encasetamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIOQUIA</td>
<td>143</td>
<td>6.871.403</td>
</tr>
<tr>
<td>ARAUCA</td>
<td>32</td>
<td>106.075</td>
</tr>
<tr>
<td>ATLANTICO</td>
<td>113</td>
<td>5.432.350</td>
</tr>
<tr>
<td>BOLIVAR</td>
<td>34</td>
<td>1.542.566</td>
</tr>
<tr>
<td>BOYACA</td>
<td>300</td>
<td>3.916.923</td>
</tr>
<tr>
<td>CALDAS</td>
<td>48</td>
<td>1.419.850</td>
</tr>
<tr>
<td>CAQUETA</td>
<td>13</td>
<td>58.700</td>
</tr>
<tr>
<td>CAUCA</td>
<td>183</td>
<td>6.544.276</td>
</tr>
<tr>
<td>CESAR</td>
<td>74</td>
<td>457.539</td>
</tr>
<tr>
<td>CORDOBA</td>
<td>58</td>
<td>1.507.957</td>
</tr>
<tr>
<td>CUNDINAMARCA</td>
<td>1.657</td>
<td>38.935.987</td>
</tr>
<tr>
<td>GUAJIRA</td>
<td>8</td>
<td>11.628</td>
</tr>
<tr>
<td>HUILA</td>
<td>251</td>
<td>2.108.490</td>
</tr>
<tr>
<td>MAGDALENA</td>
<td>34</td>
<td>737.000</td>
</tr>
<tr>
<td>META</td>
<td>204</td>
<td>2.086.300</td>
</tr>
<tr>
<td>NARIÑO</td>
<td>216</td>
<td>2.155.500</td>
</tr>
<tr>
<td>NORTE DE SANTANDER</td>
<td>144</td>
<td>2.561.410</td>
</tr>
<tr>
<td>PUTUMAYO</td>
<td>34</td>
<td>55.950</td>
</tr>
<tr>
<td>QUINDIO</td>
<td>133</td>
<td>6.655.360</td>
</tr>
<tr>
<td>RISARALDA</td>
<td>69</td>
<td>3.390.970</td>
</tr>
<tr>
<td>SANTANDER</td>
<td>1.054</td>
<td>38.673.171</td>
</tr>
<tr>
<td>SUCRE</td>
<td>52</td>
<td>535.772</td>
</tr>
<tr>
<td>TOLIMA</td>
<td>185</td>
<td>5.169.974</td>
</tr>
<tr>
<td>VALLE DEL CAUCA</td>
<td>588</td>
<td>24.306.353</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5.627</td>
<td>155.241.504</td>
</tr>
</tbody>
</table>
La producción nacional de productos y subproductos avícolas oscila en 1´941.919 ton/año, con un costo promedio de 28 y 45 millones de dólares, generados principalmente en cinco regiones de Colombia. (3)

Adicionalmente, la gallinaza se considera un combustible atractivo para la aplicación de tecnologías termoquímicas debido a su porcentaje de humedad, cuyos valores oscilan entre 56,40 y 75,31%. (4). Por otra parte, partiendo de los datos de producción de gallinaza del municipio de Lebrija (Santander) que fueron reportados por el anuario estadístico del Ministerio de Agricultura; Sanguino y Téllez realizaron un estudio teórico para evaluar el aprovechamiento energético de este residuo mediante digestión anaerobia (DA) y se concluyó que la generación de energía podría llegar a los 4,6 MJ/Kg, para lograr el nivel energético de la combustión y la gasificación a una escala de 9,7 MJ/kg de residuo. (5)

Empleo y producto interno bruto (PIB)

El sector avícola colombiano representa aproximadamente el 10,33% del producto interno bruto (PIB) pecuario, en el que participan también otras carnes, como la...
bovina y la porcina, y productos como la leche y el huevo. La participación del sector avícola en el PIB agropecuario es del 3,49%, y en el PIB nacional, 0,23%. Así pues, en comparación con productos que son sus competidores directos, los productos avícolas tienen una alta participación en el mercado nacional con una valoración de la producción por alrededor de 3643 millones de dólares al año. De igual forma y acuerdo con las estimaciones del Programa de Estudios Económicos de FENAVI.FONAV la avicultura se constituye en una actividad generadora de empleo, siendo 297.593 los empleos directos que aporta el sector avícola al país, una cantidad importante. (6)

Productos y servicios

En Colombia las principales empresas productoras de carnes avícolas tienen como común denominador el pollo, pero han conseguido diversificar su oferta. Los productos que tienen en común los principales productores son: 1. Pollo entero sin vísceras. 2. Pollo despensado. 3. Pierna pernil. 4. Alas mixtas. 5. Pechuga deshuesada. 6. Menudencias. Algunas empresas han superado las formas tradicionales de vender pollo, y lo ofrecen marinado o a las finas hierbas, o bien ofrecen muslos de pollos en salsa de barbacoa. Otras empresas, además de los productos tradicionales, confeccionan algunos más sofisticados, que requieren mayor industrialización, como las salchichas, el jamón de pollo y los chorizos de pollo. Las principales empresas comercializadoras de carne de pollo publican gratuitamente en sus páginas web recetas exquisitas y de fácil preparación. (1)

1.1.2 Reseña histórica Incubadora de Santander- Granja Bellavista horizontes
Según describe el manual de Buenas Prácticas de Manufactura, INCUBADORA SANTANDER S.A. fue fundada el 17 de Junio de 1962 por el Mayor Diego Muñoz Rodríguez, quien junto con el médico veterinario de nacionalidad Española Miguel Diez, dan forma a la idea de organizar una Empresa de Incubación Avícola.

En la ciudad de Santa Fe de Bogotá fue firmada la escritura de constitución siendo inicialmente sus socios, la Sociedad de los Hermanos Mejía con el 55% de la participación accionaria, Miguel Diez con el 20%, Diego Muñoz con el 12,5% y Guillermo Pérez con el 12,5% restante. La Razón Social de la Empresa era en ese entonces Incubadora Santander Ltda, cuyo domicilio era en la Calle 19 No. 16 – 46 de la ciudad de Bucaramanga. Contaba con un capital inicial de $150.000.oo. Inician labores con siete máquinas cuya capacidad era de 2.500 huevos por cada una y dos nacedoras con una capacidad total de 17.500 huevos, los huevos incubados eran de gallinas reproductoras raza Cobb, y es el Doctor Diez, Gerente de la empresa quien se encarga del manejo de las aves y la dirección técnica de la planta. El 2 de Enero de 1963 nacen los primeros pollitos incubados, teniendo muy buena aceptación en el mercado, y desde este momento la demanda de pollitos que vende la empresa supera a la capacidad de producción de la misma, la cual aumenta año tras año significativamente. El mercado de pollitos de un día de nacidos toma nuevos rumbos, convirtiéndose Bogotá en una de sus principales plazas.

La necesidad de una planta de incubación es evidente y por esta razón el Dr. Diez escribe a Denver Colorado USA solicitando asesoría para la construcción de la planta. Para hacer la construcción se compran unos lotes sobre la autopista a Girón donde se hace la primera etapa de las instalaciones. El 18 de Noviembre de 1968 se inaugura una lujosa planta de incubación donde se instalan 14 máquinas James Way de 2.520 huevos cada una y 4 nacedoras, 12 máquinas James Way de 2.800 huevos cada una, con sus respectivas nacedoras, 4 máquinas Robbins modelo 26Y de 9.000 huevos por carga completando una capacidad de incubación
de 416.000 huevos. En este mismo año se logra la distribución exclusiva de la raza *Hubbard* de los Estados Unidos y es así como a partir de esta fecha las granjas van a tener reproductoras de línea carne *Hubbard*, reproductoras *Golden Comet* de línea huevo rojo y reproductoras *Leghorn* para producción de huevo cáscara blanca.

En Noviembre de 1.969 se construye una segunda etapa con las mismas características de la primera, y así año por año como la demanda aumenta y el crecimiento de la empresa se hace evidente. El 8 de Mayo de 1.973 se compra en la Teja municipio de Piedecuesta un lote de terreno de aproximadamente 5 hectáreas, y se construyen 20 galpones de 600 m2.

Esta granja se constituyó modelo para el departamento, ya que es construida teniendo en cuenta las especificaciones técnicas de la época. Otras granjas son tomadas en arriendo en Lebrija y Bogotá. Desde este momento la empresa requiere mejor planificación por el volumen de producción, y el gerente Miguel Diez por inconvenientes que tiene con sus socios, decide vender sus acciones a la familia Montoya y Serrano y Cía. Por tal razón, se nombra a Francisco Serrano, gerente de la empresa gestión que dura unos meses, para ser reemplazado el 10 de Diciembre de 1.974 por el Mayor Diego Muñoz. Su hijo, el Dr. Enrique Muñoz, es nombrado como subgerente de la empresa, quien le da una transformación debido a su amplia visión, efecto de su formación en el exterior.

La administración del Mayor retirado Diego Muñoz da sus frutos, los gastos se reducen considerablemente, y las utilidades al final del ciclo contable son halagadoras. En 1.979 es reemplazado el Mayor en la gerencia, asumiendo la gestión el Dr. Enrique Muñoz, y constituyéndose hasta el día de hoy en el presidente de la empresa.
En la década de los 90’s Incubadora Santander, no solo se consolidó económicamente sino que también fue la base para la formación del grupo ISSA integrado por Agropecuaria Latinoamericana S.A., Frigorífico Vijagual S.A., Operagro, Alimentos Balanceados del Lago, e Incubadora Santander S.A.

El crecimiento es planeado en forma ordenada y tecnificada, en la cría y levante de pollitas se cuenta con granjas que poseen equipos de última tecnología para el alojamiento, suministro de agua y alimentos. Las granjas destinadas a la producción de huevo comercial tienen una capacidad de 1.8 millones de ponedoras. La de mayor capacidad es Bellavista, está dotada con baterías importadas de Europa, que automáticamente suministran agua y alimento a las aves y a través de bandas transportadoras retiran los huevos que van directamente a la bodega de clasificación y empaque, la automatización es total. Este proceso permite ofrecerle al consumidor un huevo higiénico donde en ningún momento el huevo es manipulado por el hombre. Bajo el nombre de Huevos Kikes se producen, y venden, 400 millones de huevos al año, contando con una amplia flota de vehículos especialmente acondicionados para la distribución de productos a nivel nacional e internacional. En la actualidad Bellavista está calificada como la granja más grande y tecnificada del país y una de las primeras de Latinoamérica.

Incubadora Santander S.A. también ha respondido positivamente al tema ambiental, y hoy es expresión importante de compromiso con el sector y con la comunidad, ofreciendo productos procesados en una fábrica de abono orgánico a base de gallinaza compostada con estándares de calidad superiores a las exigencias legales. La producción es de 2.000 toneladas/mes de gran uso y con excelentes resultados en cultivos de banano, rosas, yuca, hortalizas, frutas entre otros. En la línea de carne se produce y vende 40 Millones de pollitos, 1 millón de reproductoras y en la línea de ponedoras 2 Millones de pollitas al año.
En el año 1992 se inicia con la línea de ponedora comercial, a su vez iniciando con la producción de huevo comercial con granjas instaladas en piso en el municipio de Lebrija y Piedecuesta, Santander. En el año 1993 se inicia el desarrollo de ponedora comercial en jaula - batería, primer sistema instalado en América del Sur y América Central, en ambiente abierto. En este año se inició la construcción de la granja bellavista en la mesa de los santos, en Noviembre de 1994 se estaba recogiendo los primeros huevos de estas instalaciones.

![Figura 2. Granja Avícola – Gallina de Jaula](http://k32.kn3.net/taringa/1/8/1/7/9/9/48/sysrxr_oficial/CC2.jpg)

En el año 1995 se tenían los primeros 9 galpones que fueron su primer desarrollo, con la bodega de clasificación que contaba con la máquina *Diamond 8300* automática. A partir del año 1995 y hasta el 2009 se continuó en crecimiento progresivo hasta completar los 14 galpones que se tienen actualmente, en el año 2009 se realizó cambio de la maquina clasificadora, contando aún en la actualidad con la maquina Innova 400, de *diamond moba*.

El crecimiento y consolidación de ISSA obedece al compromiso con sus clientes, para garantizar la inocuidad de los productos la empresa lleva a cabo un estricto
control de calidad, contando con el apoyo de personal especializado que efectúan
inspecciones permanentes a las granjas, se cuenta con dos laboratorios,
bacteriológico y bromatológico en los cuales se procesan los análisis químicos,
microbiológicos y bromatológicos que garantizan la sanidad y optima producción.
(7)

1.2 PRODUCCIÓN DE BIOGÁS

En la actualidad la emisión a la atmósfera de gases con efecto invernadero, como
consecuencia de la actividad agropecuaria y la dependencia de los derivados del
petróleo para la obtención de energía, alteran o afectan la sostenibilidad en las
actividades productivas y económicas de la agricultura.

Según FAO (Organización de las Naciones Unidas para la Alimentación y la
Agricultura), en el caso de la ganadería, el estiércol producido contiene materia
orgánica la cual, bajo condiciones anaeróbicas se convierte a biogás. La
necesidad de alternativas de producción energética, mediante la implementación
de prácticas amigables con el ambiente y el aprovechamiento de los recursos
disponibles, crea un clima favorable para la promoción e implementación de la
technología de biodigestores para la producción de biocombustibles, como lo es el
biogás. Por tanto, aprovechar de manera eficiente este biocombustible es de
importancia para sustituir las tradicionales fuentes energéticas no renovables,
escasas y costosas, convirtiendo la explotación agropecuaria en una actividad
económica más rentable y menos contaminante (8)

En la mayoría de los países latinoamericanos, el biogás ha tenido un uso limitado
da la cocción de alimentos y calefacción de animales de granja. A pesar de esto, la
utilización del biogás en la sustitución de combustible fósiles, para la generación
de electricidad en motores de combustión interna ha cobrado importancia en los
últimos años. El biogás puede ser utilizado como remplazo de combustibles
fósiles, aunque para el uso en motores es necesario la eliminación del sulfuro de hidrógeno (H$_2$S), ya que en presencia de agua forma ácido sulfúrico (H$_2$SO$_4$) que es altamente corrosivo y puede ocasionar graves daños internos en los equipos.

1.2.1 Biogás

El biogás es un biocombustible cuyos componentes principales son el metano (CH$_4$) y el dióxido de carbono (CO$_2$), adicionalmente presenta trazas de otros gases como nitrógeno, monóxido de carbono, hidrógeno y sulfuro de hidrógeno (H$_2$S). A continuación se presenta la composición aproximada del biogás.

Tabla 3. Composición aproximada del biogás (5)

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>% Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metano</td>
<td>CH$_4$</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
</tr>
<tr>
<td>Dióxido de Carbono</td>
<td>CO$_2$</td>
</tr>
<tr>
<td></td>
<td>30-40</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>H$_2$</td>
</tr>
<tr>
<td></td>
<td>0-1</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>N$_2$</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
</tr>
<tr>
<td>Monóxido de Carbono</td>
<td>CO</td>
</tr>
<tr>
<td></td>
<td>0-1,5</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>O$_2$</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Sulfuro de Hidrógeno</td>
<td>H$_2$S</td>
</tr>
<tr>
<td></td>
<td>0-1</td>
</tr>
<tr>
<td>Vapor de Agua</td>
<td>H$_2$O</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
</tr>
</tbody>
</table>

El biogás se genera a través de la descomposición anaeróbica de la materia orgánica; este proceso se lleva a cabo en un ambiente donde se descompone la materia orgánica, también llamada biomasa, en un entorno con humedad a través de la actividad de microorganismos. En el proceso de descomposición, algunos compuestos orgánicos son transformados a minerales, los cuales pueden ser utilizados fácilmente como fertilizante para cultivos.
1.2.2 OBTENCIÓN DEL BIOGÁS: Digestión Anaerobia

El biogás se produce por fermentación de Materia Orgánica en ausencia de aire, fenómeno conocido como Digestión Anaerobia (DA), que es un proceso complejo en el que intervienen diferentes grupos microbianos, de manera coordinada y secuencial, para transformar la materia orgánica presente en la biomasa (gallinaza) hasta los productos finales del proceso: biogás y un efluente líquido rico en nutrientes. La biomasa tratada en los procesos de digestión anaerobia generalmente es biomasa residual procedente de ganadería y granjas. En la figura 3 se muestran las etapas del proceso.

Figura 3. Etapas del proceso de digestión anaerobia
Tradicionalmente la degradación anaerobia ha sido considerada como un proceso de dos etapas en donde participan dos grandes grupos bacterianos: bacterias formadoras de ácidos o acidogénicas y bacterias formadas de metano o metanogénicas, sin embargo una descripción más detallada del proceso permite considerar múltiples etapas sucesivas:

- **Hidrólisis:** En esta etapa la materia orgánica es metabolizada por los microorganismos. Esta materia es descompuesta por la acción de un grupo de bacterias hidrolíticas anaeróbicas que hidrolizan las moléculas solubles en agua, tales como grasas, proteínas, carbohidratos y las transforman en polímeros más simples (9). El grado de hidrólisis y la velocidad del proceso dependen de muchos factores, entre otros del pH, de la temperatura y de la concentración de biomasa.

- **Acidogénesis:** Implica la fermentación de las pequeñas subunidades producidas en la hidrólisis a través de una serie de reacciones sucesivas, generándose gran variedad de compuestos orgánicos simples. Los productos principales de esta etapa son ácidos grasos volátiles, dióxido de carbono e hidrógeno, así como pequeñas cantidades de ácido láctico y etanol. Estos procesos constituyen la base energética de las poblaciones no metanogénicas (9).

- **Acetogénesis:** Esta etapa la llevan a cabo las bacterias acetogénicas y realizan la degradación de los ácidos orgánicos donde los alcoholes, ácidos grasos y compuestos aromáticos se degradan produciendo ácido acético, y liberando como productos hidrógeno y dióxido de carbono que son los sustratos de las bacterias metanogénicas (10).

- **Metanogénesis:** La cuarta etapa comprende la formación de metano en condiciones estrictamente anaeróbicas. Esta etapa implica dos grupos de
reacciones; aquellas en las que el dióxido de carbono e hidrógeno se combinan para producir metano y agua, y las que convierten el acetato en metano y dióxido de carbono.

Producción de metano por reducción de CO₂: La metanogénesis por reducción de CO₂ es una forma de respiración anaeróbica. Los metanógenos no utilizan el oxígeno para respirar, de hecho, el oxígeno inhibe el crecimiento de estos microorganismos. El aceptor de electrones terminal en la metanogénesis es el carbono (11).

\[CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \]

Producción de metano a partir de moléculas orgánicas: Las bacterias metanógenas pueden producir también metano a partir de sustratos orgánicos sencillos como el ácido acético, el formiato, el metanol, la metilamina, el sulfuro de dimetilo y el metanotiol. Se ha demostrado que el metano se origina exclusivamente a partir de carbono metílico del ácido acético:

\[CH_3COOH \rightarrow CH_4 + CO_2 \]

Por lo tanto, estas bacterias pueden producir metano a partir de formas parcialmente reducidas de carbono contenido en compuesto orgánicos; tales reacciones pueden considerarse como verdaderamente fermentaciones.

1.3 BIODIGESTORES

Un biodigestor es un contenedor cerrado, hermético e impermeable en donde se propician las condiciones ideales para que ocurra una reacción química, en la cual
bacterias anaerobias fermentan un material orgánico (Sustrato) bajo la presencia de un inóculo y posiblemente agua. El producto de esta reacción anaerobia es gas metano y dióxido de carbono, adicionalmente se produce como subproducto un efluente rico en nutrientes orgánicos tales como Nitrógeno, Fosforo y Potasio. (12) (11)

1.3.1 Clasificación de Biodigestores

Existen varios tipos de Biodigestores, aunque estos pueden clasificarse de acuerdo al diseño de construcción o al tipo de régimen de carga empleado.

De acuerdo al tipo de alimentación o régimen de carga empleado, los biodigestores se clasifican en Batch, Semi-Continuo y Continuo.

Batch:

Este tipo de biodigestores se caracteriza porque el reactor es alimentado con la materia prima (Sustrato, Inoculo y agua) y la descarga o el biogás producto de la reacción anaerobia puede realizarse cuando se ha dejado de producir el gas combustible. Inmediatamente ha ocurrido lo anterior es posible realizar nuevamente la carga con un nuevo lote de materia prima. (13) (14) (15)

Las principales características de los biodigestores tipo Batch son:

- Su operación por ciclos permite que la disponibilidad de la materia prima sea escasa.
- Requieren poca atención diaria.
- Exigen la adecuación de un espacio para almacenar la materia prima y el biogás producido.
- La producción de biogás y sedimentos es esporádica.
Semi-continuo:

Este tipo de biodigestores se cargan generalmente una vez por día de acuerdo a la cantidad y tipo de materia prima empleada así como el tiempo de retención del reactor. El biogás producido es obtenido de manera constante si las condiciones de operación se han logrado mantener estables.

Entre los biodigestores que se clasifican dentro del anterior régimen de carga se encuentran los de Tipo Hindú o de Campana flotante y los del Tipo Chino o de Campana Fija. (13) (14) (15)

Las principales características de los biodigestores Semi-continuos son:

- Los reactores soportan una gran variedad de materias primas.
- La presencia de material inerte en la materia prima no afecta la reacción de fermentación.
- Requieren poca atención diaria.
- Su operación por ciclos permite que la disponibilidad de la materia prima sea escasa.
- Tanto el proceso de carga como descarga exigen una operación laboriosa y de cuidado.

Continuo:

El proceso de producción de biogás en un biodigestor de régimen continuo es ininterrumpido y por lo tanto la descarga o efluente debe ser retirado constantemente así como la carga de la materia prima debe ejecutarse de forma constante también. El ciclo de producción de biogás podrá ser reiniciado una vez
que se haya retirado el contenido total de materia prima y el reactor sea cargado nuevamente. (13) (14) (15)

Las principales características de los biodigestores continuos son:

- La digestión anaerobia es posible controlarla con mayor precisión, por lo tanto cualquier anomalía en la producción de biogás podrá corregirse durante la marcha.
- Luego de realizar la primera carga el reactor solo requiere ser desocupado una vez que vaya a recibir mantenimiento.
- Estos biodigestores pueden ser empleados para la producción de biogás en grandes volúmenes aunque los reactores requerirían mecanismo de agitación y control de procesos.
- Los biodigestores de régimen continuo deben ser construidos en áreas donde exista una gran cantidad de materia prima o haya disponibilidad de contar con esta constantemente.
- Si las condiciones de producción del biogás son muy favorables es posible que estos Biodigestores no requieran mano de obra durante la etapa de operación.

De acuerdo al diseño de construcción se pueden encontrar varios tipos de Biodigestores pero los más empleados son: Campana Flotante (Tipo Hindú), Cúpula Fija (Tipo Chino), Planta Balón, Alta Velocidad o Flujo Inducido, De Dos Etapas, entre otros.
Biodigestor de Cúpula Fija (Tipo Chino):

Este biodigestor fue desarrollado en la República Popular de China y por lo tanto tiene una amplia distribución en este país llegando a construir cerca de 8’000.000 de unidades especialmente en áreas rurales. Puede ser construido con una gran variedad de tamaños desde 6 m3 para aplicaciones familiares hasta 200 m3 que son empleados en áreas comunales. El biodigestor tipo Chino se caracteriza porque cuenta con una cámara de gas fija e inmóvil construida con materiales tales como: Ladrillo, Cemento, piedra. Tanto la parte superior como inferior tienen formas semiesféricas y están unidas por lados rectos mientras que su superficie interior es sellada por capas internas y delgadas que permitan darle hermeticidad y firmeza. Cuenta adicionalmente con un tapón en la parte superior que facilita la limpieza de este y un conducto de salida de biogás, por otra parte el tubo de carga es recto y finaliza en la mitad del nivel dentro del biodigestor. Adicionalmente, este diseño presenta un bajo costo de fabricación, requiere del empleo de un producto impermeabilizante puesto que las fugas de gas pueden ser recurrentes así como la variación de la presión del gas, se recomienda además ser construido bajo tierra en suelos estables y firmes dotándolo así de aislamiento térmico. (12) (16) (15)

![Figura 4. Biodigestor de Cúpula Fija (12)]
Biodigestor de Campana Flotante (Tipo Hindú):

Este biodigestor fue diseñado en la India y se caracteriza porque el reactor o digestor tiene una forma esférica o cilíndrica elaborada comúnmente con ladrillo, grava y arena, además cuenta con un depósito de gas móvil en forma de campana fabricado con láminas de acero o polietileno de alta densidad resistente a los rayos UV y a la corrosión. Dicha campana puede flotar directamente en la masa de fermentación o en un anillo de agua permitiéndole subir y bajar libremente con la ayuda de un soporte de hierro como guía. La movilidad de la campana permite suministrar gas a presión constante. Este diseño es fácilmente operable, aunque el depósito de gas requiere un mantenimiento intensivo con el objetivo de prevenir la corrosión sobre dicha estructura y por ende evitar posibles fugas de gas. Su construcción también puede realizarse bajo tierra permitiendo un aislamiento térmico del reactor. (11) (16)

![Figura 5. Biodigestor de Campana Flotante (12)](image)

Biodigestor de Balón de Plástico o de estructura flexible

Este biodigestor puede operar de forma continua o semi-continua y es recomendado en zonas con presencia de altas y constantes temperaturas. Sus
costos de fabricación son bajos, puesto que el reactor podría ser elaborado con una bolsa de plástica, caucho, polietileno o una geo-membrana de PVC completamente sellada, dicho reactor cuenta además con dos tubos conectados directamente a la bolsa que permiten la entrada y salida de material. Por otra parte, los materiales con las cuales se fabrique el reactor deben ser elegidos cuidadosamente puesto que estos deben ser resistentes a la intemperie y a los rayos UV, es de resaltar que el tiempo de vida útil de estos materiales bajo condiciones normales de operación podrían oscilar entre 3 y 8 años. Generalmente estos reactores se cargan con materia prima hasta lograr un 75 % de su volumen total, por lo tanto, el 25 % restante se emplearía para almacenar el biogás, aunque es posible acondicionar una bolsa adicional para almacenar el gas producido. (11) (17) (18)

![Figura 6. Biodigestor de Estructura Flexible (12)](image)

Biodigestores de Alta Velocidad o Flujo Inducido

También conocidos como CSTD por sus siglas en inglés (Conventional Stirred Digestor), son empleados con materias primas que contienen un alto contenido de sólidos totales. Estos reactores cuentan con un agitador que actúa de manera continua o intermitente permitiendo que la materia prima que aún no ha
reaccionado entre en contacto con las bacterias y obtener así una buena digestión con menos tiempo de reacción (Hasta de 15 días). La principal desventaja de estos diseños se encuentra en que los agitadores requieres de un mantenimiento constante para de esta forma prolongar la vida útil de estos. (11) (17)

De Dos Etapas

Las bacterias involucradas en el proceso de descomposición de la materia orgánica compleja requieren de diferentes condiciones de pH y tiempo de retención para su crecimiento óptimo. Debido a las diferentes condiciones que requieren las bacterias en el proceso de digestión anaerobia es necesario contar con dos reactores, en el primero de ellos ocurren las reacciones de hidrólisis y acidogénesis de la materia orgánica compleja y en el segundo reactor por lo tanto ocurren las reacciones de acetogénesis y metanogénesis del material acidificado. Aunque los tiempos de retención del Biodigestor de Dos Etapas son largos y presentan además bajas velocidades de reacción, el biogás producido por este diseño es rico en metano, esta configuración aporta seguridad y estabilidad al sistema permitiendo además tener un completo control del proceso permitiendo variaciones de pH, temperatura, carga etc. (17)
2. MARCO REGULATORIO Y AMBIENTAL

La normativa ambiental y jurídica que se debe tener presente para el subsector avícola y a nivel energético en el desarrollo del proyecto es la siguiente:

Tabla 4. Normativa Jurídica

<table>
<thead>
<tr>
<th>MARCO LEGISLATIVO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreto Ley 2811/74</td>
<td>Código de recursos naturales</td>
</tr>
<tr>
<td>Ley 9 de 1979</td>
<td>Código Sanitario</td>
</tr>
<tr>
<td>Ley 99 de 1993</td>
<td>Ley de Medio Ambiente</td>
</tr>
<tr>
<td>Ley 388 de 1997</td>
<td>Ordenamiento territorial</td>
</tr>
<tr>
<td>Ley 633 de 2000</td>
<td>Tarifas de servicios ambientales</td>
</tr>
</tbody>
</table>

Tabla 5. Normativa Ambiental

<table>
<thead>
<tr>
<th>AIRE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreto 02 de 1982</td>
<td>Normas de calidad de aire</td>
</tr>
<tr>
<td>Decreto 948 de 1995, Resolución 619/96</td>
<td>Emisiones Atmosféricas</td>
</tr>
<tr>
<td>Resolución 601 de 2006</td>
<td>Calidad del aire</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROTECCION DEL PAISAJE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreto 1715 de 1978</td>
<td>Reglamentación de paisaje</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLORA Y FAUNA SILVESTRE Y BOSQUES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley 84 de 1989</td>
<td>Estatuto Nacional de protección de los animales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECURSOS ENERGETICOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley 697 de 2001</td>
<td>Uso racional y eficiente de la energía</td>
</tr>
<tr>
<td>Ley 1715 de 2014</td>
<td>Integración de energía renovables</td>
</tr>
</tbody>
</table>

El proyecto contempla un pequeño análisis de los impactos ambientales actuales de la granja, específicamente con la cantidad, uso, almacenaje y manejo del
estiércol, el cual de interés social y gubernamental, para mejorar la calidad de vida de los pobladores cercanos a la granja.

Así mismo se plantea las condiciones, riesgos y contingencias que se deben tener para el desarrollo de la opción de producir biogás con el estiércol, e igualmente los efectos producto de su manipulación, fermentación, e inclusive los efectos del horno quemador producto de la combustión del biogás. Además de visualizar en su conjunto las nuevas condiciones integrales de la granja producto de los cambios en infraestructura, productos y subproductos.

Para garantizar el desarrollo sostenible del proyecto se debe contemplar el objetivo de la Gestión ambiental en dos aspectos macros, y el desarrollo de una metodología de planeación, gestión, control y desarrollo para el cumplimiento de estos dos objetivos:

1. Conservar y restaurar los recursos naturales renovables y
2. Prevenir y controlar la contaminación

La metodología propuesta para el cumplimiento de estos dos objetivos que finalmente buscan defender la salud y el bienestar de todos los habitantes del territorio nacional, específicamente los pobladores y vecinos de la granja, se definen en un Plan de Manejo Ambiental que podría incluir un estudio de impacto ambiental, programas de manejo ambiental, un plan de contingencias, y un plan de cumplimiento ambiental, con la expectativa de acceder o mantener la licencia ambiental gestionada.
2.1 METODOLOGÍA PROPUESTA PARA EL MANEJO AMBIENTAL

Dimensionamiento General del proyecto (Estudio ambiental)

- Ubicación del terreno y superficie de donde se va a desarrollar el proyecto (posición geográfica): Granja Avícola Bellavista. Vía Piedecuesta- Los Santos (Santander)- 40m² dentro de la Granja.
- Condiciones climatológicas (altura:1005-1310 msnm, humedad:94%-100%, temperatura: 16-20°C)
- Caracterización de la Infraestructura, maquinaria y equipo necesaria para el desarrollo del proyecto y la base actual de funcionamiento de la granja (dimensionamiento de Biodigestor)
- Descripción y caracterización de las diferentes actividades desarrolladas en la granja especificando las modificadas acuerdo al proyecto-Caracterizaciones de los procesos.
- Las condiciones actuales, que en los diferentes procesos, incluidos los nuevos se deben tener en cuenta para la prevención de la contaminación en los elementos mencionados.

El sistema de producción de biogás se compone principalmente de los siguientes subsistemas
- Sistema de recolección de residuos
- Digestor (biodigestor)
- Sistema de almacenamiento del efluente
- Sistema de conducción de biogás
- Equipos o sistemas de utilización del biogás
Figura 7. Sistema de producción de Biogás en la Granja

Estudio de Impacto ambiental

Con los anteriores componentes se construye y visualiza una identificación y evaluación de impactos y aspectos ambientales mediante herramientas adecuadas (matrices-componentes-proBABILIDADES-impactos). A continuación se especifica los mayores impactos generados en las etapas de la implementación del proyecto.

- **Recolección de residuos**
 Se parte de un residuo de la industria avícola (gallinaza); estos residuos pueden ser de tipo líquido o sólido y deben ser condicionados para iniciar el proceso de producción de biogás. Realizar una adecuada recolección de residuos permite reducir las emisiones que genera la gallinaza en el ambiente; y de igual forma se reduciría considerablemente los malos olores que se pueden presentar y se da un valor a estos residuos, puesto que son materia prima potencial para la producción de biogás.
• **Producción de Biogás (Biodigestor)**

En esta etapa se procesa la materia prima, con la implementación del biodigestor se evitan las emisiones de gases que los residuos avícolas producen en su proceso de descomposición al ambiente. De igual forma se produce el biogás por lo cual se evita el uso de combustibles fósiles, los cuales son los que mayor impacto generan al ambiente. Si no se cuenta con biodigestores se tendría que cuantificar los daños generados al ambiente ya sea en forma de deforestación, emisiones de gases o contaminación de mantos acuíferos. Aunque se debe tener presente que si el biogás producido no es utilizado es contaminante, por lo tanto es importante adecuar el tamaño de las necesidades del lugar para producir únicamente el biogás necesario.

• **Almacenamiento del efluente**

A parte de producir el biogás se generan otros compuestos, el cual es denominado abono líquido o bioabono, el cual puede ser utilizado como remplazo de los fertilizantes químicos y tiene la ventaja que disminuye las pérdidas de nutrientes del suelo. Por lo tanto se está impactando positivamente el ambiente ya que se disminuye el uso de productos químicos que pueden afectar la calidad del suelo. Debe tenerse presente que se debe realizar una utilización y disposición adecuada, ya que de lo contrario se estaría generando una acumulación y contaminación al ambiente.

• **Transporte y utilización del biogás**

El biogás producido no es 100% limpio, ya que también se genera ácido sulfhídrico, por lo tanto es necesario contar con trampas de H₂S, que reaccionan con el ácido y se depositan y posteriormente deben disponerse de manera adecuada.
Plan de manejo Ambiental

Bienes contaminables: Aire, agua, suelo.

Se proyectan los diferentes tipos de manejo acuerdo a las características propias resaltadas:

- Manejo de aguas lluvias
- Manejo de residuos sólidos industriales y domésticos
- Manejo de Aguas residuales Industriales y domesticas
- Manejo y control de olores ofensivos (relación directa con el proyecto)
- Manejo del uso eficiente y ahorro del agua
- Manejo y control de moscas y roedores (relación directa con el proyecto)
- Manejo Paisajístico

Plan de contingencias:

Para la identificación y evaluación de los riesgos, el análisis de las posibles amenazas, de las vulnerabilidades y el análisis del riesgo y las medidas de emergencia que se podrían tomar.

Plan de cumplimiento:

Los diferentes compromisos visualizados en los diferentes programas y proyectos que impulsen la mejora en las condiciones ambientales dividido por los diferentes componentes contaminables.

La producción de Biogás a partir de Gallinaza lograría contribuir a evitar el calentamiento global por la presencia de gases efecto invernadero, puesto que la combustión del Metano podría generar un aporte neutro de CO2 a la atmósfera siempre que exista un balance cero entre la biomasa producida por el medio natural y la usada en la producción de energía. Adicionalmente, al producir Biogás
se generaría abono orgánico como subproducto que haría prescindibles la utilización de Fertilizantes Químicos, la utilización de la gallinaza para producir Biogás permitiría establecer una conciencia ecológica en las personas por medio de la cual se crearía una cultura de preservación de los recursos y por ende de conservación del medio ambiente.

Finalmente los cambios de las condiciones ambientales con la implementación de la nueva tecnología de generación energética generan impactos positivos en emisiones al aire, enriquecimiento de suelos y control de plagas.
3. ESTUDIO TÉCNICO DEL PROYECTO

3.1 REQUERIMIENTOS ENERGÉTICOS DE LA GRANJA

BELLAVISTA- HORIZONTES, es una granja avícola al servicio de la Incubadora de Santander, cuya actividad comercial es la producción de huevo de mesa. Los procesos industriales actuales de la granja requieren un suministro promedio mensual de 58,977 Kwh de energía eléctrica, 776 galones de ACPM mensuales y 136 galones de gasolina corriente al mes. Adicionalmente, la Granja emplea cilindros de gas propano empleados en un cocinador de mortalidad que tienen un costo aproximado de $163’895.458. (10). El estudio técnico desarrollado en este capítulo se realizó con el objetivo de reemplazar la totalidad de la demanda de gas propano por biogás producido a partir de gallinaza.

Por otra parte, la granja Bellavista- Horizontes, genera en promedio 127,5 m³/día de gallinaza. Un ave en producción a las 18 semanas debe consumir 85 gr de alimento y va aumentando 5 gramos por semana hasta alcanzar los 115-120 gramos. El 33% del alimento consumido por un ave, es asimilado para su desarrollo y el 67% se convierte en residuo. Por lo tanto, durante la etapa de producción se produce en promedio 0.0804 Kg de gallinaza en masa seca/día/ave. (10)

El uso de los combustibles fósiles y la generación energética produce contaminantes físico y químicos, que generan un impacto negativo en el medio ambiente, como es la producción de gases efecto invernadero. El agotamiento de los combustibles fósiles ha incrementado el interés de producción y uso de biocombustibles a partir de fuentes renovables (19) y es por este motivo que en las últimas décadas se ha avanzado en la investigación de tecnologías para el aprovechamiento energético de la biomasa como lo es el diseño del biodigestor presentado a continuación.
3.2 DISEÑO DEL BIODIGESTOR

El diseño que se presenta a continuación busca satisfacer la demanda del cocinador de mortalidad de la granja Bellavista-Horizontes, el cual consume Cilindros de GLP que tiene un costo de 163’895.458. (10)

Cálculo de la Energía demanda por el cocinador de la Granja:

Asumiendo que cada cilindro de GLP pesa aproximadamente 80 lb, obtenemos (20):

\[\text{Peso Cilindro GLP} = P \text{ GLP} = 80lb = 36,24 \text{ kg} \]

\[\text{Densidad del GLP} = \rho \text{ GLP} = 0,56 \frac{\text{kg}}{l} \]

\[\text{Volumen GLP Demorado} = V \text{ GLP} = 13675 \text{ Litros} \]

\[\text{Poder Calorífico GLP} = 10830 \frac{\text{kcal}}{kg} = 6064,8 \frac{\text{kcal}}{l} \]

\[\text{Energía Demanda} = 96454 \frac{\text{kwh}}{año} = 264 \frac{\text{kwh}}{dia} \]

Cálculo de la cantidad de Biogás requerido para satisfacer la demanda previamente hallada:

De acuerdo a referencias bibliográficas (18) (21) (22) se encontró que el poder calorífico del Biogás puede variar entre 4400 kcal/m3 y 5500 kcal/m3. Para los cálculos presentados a continuación se consideró el valor promedio, es decir:

\[\text{Poder Calorífico Biogas} = 4950 \frac{\text{kcal}}{m^3} = 5,75 \frac{\text{kwh}}{m^3} \]
Contenido de biogás necesario para atender la demanda de energía del cocinador (264 kWh/día):

\[
\text{Biogas Demorado} = 264 \frac{\text{kWh}}{\text{día}} \times \frac{1 \text{m}^3\text{Biogas}}{5,75 \text{kWh}} = 46,03 \frac{\text{m}^3\text{Biogas}}{\text{día}}
\]

Cálculo de la cantidad de Materia Prima para Carga (MPC):

El cálculo de la cantidad de materia prima para carga se determina a partir de la metodología propuesta por la UPME mediante el documento ANC-0603-19-01 “Guía para la Implementación de Sistemas de Producción de Biogás” (12)

\[
\text{MPC} = \frac{\text{PG}}{\text{SO} \times \text{P}}
\]

MPC: Materia Prima para Carga

PG: Producción de Gas

SO: Porcentaje de Materia Orgánica del Estiércol según la Especie.

P: Producción aproximada de metros cúbicos de gas por cada kilogramo de masa orgánica seca total.

De acuerdo a la guía propuesta por la UPME, conocemos los porcentajes de Sólidos Orgánicos y la cantidad de metros cúbicos de biogás producido por kilogramo de masa orgánica seca:

% SO Bovinaza = 13 %

% SO Gallinaza = 17 %

P. Bovinaza = 0,250 \frac{m^3}{kg}

P. Gallinaza = 0,400 \frac{m^3}{kg}
Adicionalmente, para hacer el cálculo de la Materia Prima para Carga es necesario considerar que la relación Inóculo – Sustrato para la gallinaza de jaula de la granja Bellavista-Horizontes debe ser igual a 1.5, empleando como inóculo Estiércol Bovino (10).

A partir de las anteriores consideraciones se determina que el contenido de gas producido tanto de Gallinaza como Bovinaza debe ser igual a:

\[\text{Biogás Demandado Gallinaza} = 26,81 \, \frac{m^3}{\text{día}} \]

\[\text{Biogás Demandado Bovinaza} = 19,22 \, \frac{m^3}{\text{día}} \]

Con las anteriores demandas de Biogás se determina la cantidad de Materia Prima Para Carga:

\[\text{MPC Gallinaza} = \frac{26,81 \, \frac{m^3}{\text{día}}}{0,17 \times 0,4 \, \frac{m^3}{\text{kg}}} = 394,27 \, \frac{kg}{\text{día}} \]

\[\text{MPC Bovinaza} = \frac{19,22 \, \frac{m^3}{\text{día}}}{0,13 \times 0,25 \, \frac{m^3}{\text{kg}}} = 591,42 \, \frac{kg}{\text{día}} \]

Cálculo de Masa de Agua para Mezcla (MH}_2\text{O):

De acuerdo a la Guía para la Implementación de Sistemas de Producción de Biogás, se debe adicional agua a la materia prima hasta lograr una proporción de diez partes de agua por una de sólidos orgánicos.

\[MH_2O = \frac{\text{MPC} \times \%SO}{10} - \text{MPC} \]
Tiempo de Retención

La Unidad de Planeación Minero Energética propone la siguiente relación para calcular el tiempo de retención en función de la temperatura.

\[
TR = (-51,227 \times \ln(T \, ^{\circ}C) + 206,72)
\]

Considerando que la temperatura media del lugar donde se encuentra ubicada la granja es igual a 28 °C, obtenemos:

\[
TR = (-170,698 + 206,72) = 36 \, \text{Días}
\]

Volumen del Biodigestor

El volumen del Biodigestor se determina multiplicando la carga diaria para alimentar el Biodigestor por el tiempo de retención. Adicionalmente se considera un 20 % de volumen adicional, espacio en el cual se almacenará el Biogás.

\[
Vd = C \times TR \times 1,2
\]

Vd: Volumen del Biodigestor.

C: Carga diaria en metros cúbicos por día.

TR: Tiempo de Retención

1,2: 20 % de volumen adicionada para almacenar el Biogás.
N número de gallinas y vacas necesarias para satisfacer la demanda

\[\frac{E \times 100}{PVP \times PE} = NA \]

\(E: \) Estiércol en Kilogramos por día.

\(NA: \) Número de animales por especie.

\(PVP: \) Peso vivo promedio por animal

\(PE: \) Producción de estiércol por animal por día en porcentaje de peso vivo

\(PE \) Gallina = 4.5 %

\(PE \) Bovinaza = 5.0 %

\[\begin{align*}
NA \text{ GALLINAS} &= \frac{394,27 \text{ kg} \times 100}{2 \text{ \frac{kg}{ave} } \times 4.5} = 4380 \text{ \frac{ave}{día}} \\
NA \text{ BOVINOS} &= \frac{591,42 \text{ kg} \times 100}{350 \text{ \frac{kg}{ave} } \times 5.0} = 34 \text{ \frac{Bovinos}{día}}
\end{align*} \]

Selección del Diseño

La selección del tipo de Biodigestor a dimensionar se realiza con base en una evaluación y/o comparación de los Biodigestores más empleados. Ver tabla:
<table>
<thead>
<tr>
<th>Aspecto o Variable</th>
<th>TIPOS DE BIODIGESTORES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cúpula Fija</td>
</tr>
<tr>
<td>Económico</td>
<td>Alta Inversión inicial, el riesgo de presentarse fisuras en su etapa operativa podría incrementar los costos.</td>
</tr>
<tr>
<td>Construcción</td>
<td>Requiere mano de obra especializada para su construcción</td>
</tr>
<tr>
<td>Transporte de material</td>
<td>Se debe disponer de la logística necesaria para transportar ladrillos, arena, cemento, entre otros materiales</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>Personal con capacitación básica</td>
</tr>
<tr>
<td>Tiempo de vida útil</td>
<td>Elevado tiempo de vida útil</td>
</tr>
<tr>
<td>Área de construcción</td>
<td>No requiere de un área amplia para su implementación</td>
</tr>
</tbody>
</table>
A partir del análisis presentado en la anterior tabla, se decidió elegir el diseño tubular, puesto que el área que se dispone actualmente para la construcción del biodigestor es extensa, adicionalmente la fase de construcción y mantenimiento no requiere de personal especializado (Albañil y/o maestro de construcción, conocimientos en metalurgia), además, de acuerdo a la bibliografía consultada los costos iniciales de inversión son menores aunque también lo es su tiempo de vida útil.

Dimensionamiento del Biodigestor

Existe una relación óptima entre la Longitud y el Diámetro de los Biodigestores que evita que estos trabajen ineficientemente. La relación ideal debe estar comprendida entre 5 y 10 con un valor medio de 7,5. (23)

Comercialmente se pueden conseguir Biodigestores con un ancho de rollo de hasta 2 m. Pero para cubrir la demanda total de energía de la Granja Bellavista-Horizontes fue necesario recurrir de un ancho de rollo de 5 m y de esta forma lograr la relación óptima entre la Longitud y el Diámetro.

\[
\text{Ancho de Rollo} = 3,5 \text{ m}
\]

\[
\text{Perímetro} = 2 \cdot \text{Ancho de Rollo} = 7 \text{ m}
\]

\[
\text{Diámetro} = \frac{\text{Perímetro}}{\pi} = 2,22 \text{ m}
\]

\[
\text{Sección Eficaz} = \frac{\pi \cdot \text{Diámetro}^2}{4} = 3,89 \text{ m}^2
\]

\[
\text{Longitud} = \frac{\text{Volumen Biodigestor}}{\text{Sección Eficaz}} = \frac{61 \text{ m}^3}{3,89 \text{ m}^2} = 15,64 \text{ m}
\]

\[
\frac{L}{D} = \frac{15,64 \text{ m}}{2,22 \text{ m}}
\]
Tamaño de la zanja del Biodigestor

El biodigestor deberá ser alojado en el interior de una zanja excavada con forma de talud con el objetivo de dar soporte a la estructura y mantener constante de la temperatura.

La longitud de la zanja dependerá de la longitud del Biodigestor y el ancho superior, el ancho inferior y altura de la zanja son función del ancho de rollo empleado. (23)

De acuerdo a la tabla 2, la cual fue tomada de la Guía de Diseño y Manual de Instalación desarrollada bajo el Programa de Desarrollo Agropecuario en la ciudad de La Paz, es posible extrapolar las dimensiones de la zanja para un ancho de rollo igual a 3,5 metros. (24)

Tabla 7. Tamaño de la Zanja del Biodigestor

<table>
<thead>
<tr>
<th>Ancho Rollo (m)</th>
<th>Profundidad (m)</th>
<th>Ancho Superior (m)</th>
<th>Ancho Inferior (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td>0,6</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>1,25</td>
<td>0,7</td>
<td>0,6</td>
<td>0,4</td>
</tr>
<tr>
<td>1,50</td>
<td>0,8</td>
<td>0,7</td>
<td>0,5</td>
</tr>
<tr>
<td>1,75</td>
<td>0,9</td>
<td>0,8</td>
<td>0,6</td>
</tr>
<tr>
<td>2,00</td>
<td>1,0</td>
<td>0,9</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Las dimensiones de la zanja que requiere el Biodigestor de la Granja Bellavista-Horizontes, son las siguientes:

Profundidad: 1,6 metros

Ancho Superior: 1,5 metros

Ancho Inferior: 1,3 metros
4. ESTUDIO FINANCIERO DEL PROYECTO

4.1 INVERSIÓN

La inversión estimada para la instalación de un sistema de producción de biogás, que incluye un biodigestor de 60 m³ por medio del cual se satisface la demanda energética del cocinador de la granja Bella Vista Horizontes, así como la construcción de la zanja y accesorios necesarios se muestra a continuación:

4.1.1 Biodigestor

El biodigestor cotizado se caracteriza por estar hecho con una Geo-membrana PVC GEOVINIL (Geo-membrana Reforzada), con soporte de poliéster de alta tenacidad, con recubrimiento por ambas caras en resina plástica de PVC y aditivos, lo que genera protección anti-hongos, resistencia a diversos productos químicos y resistencia a rayos solares

Tabla 8. Inversión Digestor

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Valor Unitario COP</th>
<th>Valor Total COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodigestor Tubular de Polietileno</td>
<td>1</td>
<td>3’171.440</td>
<td>3’171.440</td>
</tr>
<tr>
<td>Adhesivo de Polietileno y PVC</td>
<td>1</td>
<td>80.791</td>
<td>80.791</td>
</tr>
<tr>
<td>Tubería de PVC de 2"</td>
<td>2</td>
<td>97.489</td>
<td>194.978</td>
</tr>
<tr>
<td>Tubería de PVC de 1"</td>
<td>2</td>
<td>44.656</td>
<td>89.312</td>
</tr>
<tr>
<td>Abrazaderas metálicas de 2" y 1"</td>
<td>6</td>
<td>16.888</td>
<td>101.328</td>
</tr>
<tr>
<td>Cinta aislante</td>
<td>1</td>
<td>1.500</td>
<td>1.500</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>3’639.349</td>
</tr>
</tbody>
</table>

4.1.2 Conducción del Biogás

Los elementos necesarios para conducir el Biogás desde el Biodigestor hacia el cocinador son los siguientes:
Tabla 9. Inversión para la conducción del Biogás

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Valor Unitario COP</th>
<th>Valor Total COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubería de PVC de 1"</td>
<td>17</td>
<td>44.656</td>
<td>759.152</td>
</tr>
<tr>
<td>Tubería de PVC de 1/2"</td>
<td>1</td>
<td>22.643</td>
<td>22.643</td>
</tr>
<tr>
<td>Bushing reductor de 1" a 1/2"</td>
<td>1</td>
<td>4.151</td>
<td>4.151</td>
</tr>
<tr>
<td>Válvula de Bola de PVC de 1"</td>
<td>4</td>
<td>11.622</td>
<td>46.488</td>
</tr>
<tr>
<td>Codos de PVC de 1" a 90°</td>
<td>5</td>
<td>5.095</td>
<td>25.475</td>
</tr>
<tr>
<td>Adaptador Hembra de PVC de 1"</td>
<td>2</td>
<td>9.183</td>
<td>18.366</td>
</tr>
<tr>
<td>Adaptador Macho de PVC de 1"</td>
<td>1</td>
<td>9.938</td>
<td>9.938</td>
</tr>
<tr>
<td>Adaptador Macho de PVC de 1/2"</td>
<td>1</td>
<td>5.220</td>
<td>5.220</td>
</tr>
<tr>
<td>Tapón roscado de PVC de 1"</td>
<td>2</td>
<td>1.689</td>
<td>3.378</td>
</tr>
<tr>
<td>Tee de PVC roscada de 1"</td>
<td>7</td>
<td>9.120</td>
<td>63.840</td>
</tr>
<tr>
<td>Teflón</td>
<td>1</td>
<td>2.300</td>
<td>2.300</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>960.951</td>
</tr>
</tbody>
</table>

4.1.3 Cocinador

Las adecuaciones que deben realizarse al cocinador para que este opere con biogás son mínimas, en la siguiente tabla se presentan los materiales requeridos para dicho propósito.

Tabla 10. Inversión Cocinador

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Valor Unitario COP</th>
<th>Valor Total COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codo de PVC de 1/2" a 90°</td>
<td>2</td>
<td>2.453</td>
<td>4.906</td>
</tr>
<tr>
<td>Válvula de Bola de PVC de 1/2"</td>
<td>1</td>
<td>6.274</td>
<td>6.274</td>
</tr>
<tr>
<td>Adaptador macho de PVC de 1/2"</td>
<td>1</td>
<td>5.220</td>
<td>5.220</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>16.400</td>
</tr>
</tbody>
</table>

4.1.4 Zanja

La zanja que soportará el Biodigestor presenta el siguiente costo
Los precios de los accesorios en PVC fueron tomados del catálogo de Pavco “Precios Base de Pavco Para Sus Clientes Ferreteros” (25)

A partir de los datos anteriormente presentados se determina que la Inversión en Instalaciones corresponde a la sumatoria de la “Inversión para la conducción del Biogás” (Tabla 9), “Inversión Cocinador” (Tabla 10) e “Inversión Zanja” (Tabla 11), obteniendo de esta forma un monto igual a $14’829.997 COP. Por otra parte la Inversión en Maquinaria concierne a la compra y adecuación del Biodigestor (Tabla 8), es decir, para este ítem se requieren $3´639.349 COP.

4.2 EVALUACIÓN FINANCIERA DEL PROYECTO

Los flujos de caja de la operación del cocinador empleando GLP (Flujo de Caja Sin Proyecto) y usando Biogás (Flujo de Caja Con Proyecto) son presentados a continuación:
4.2.1 Operación actual usando GLP (sin proyecto)

El flujo de caja sin proyecto se realizó bajo las siguientes pautas:

- Tiempo de operación igual a nueve (9) años (tiempo de vida proyecto).
- Costos de operación atribuidos a la compra anual de Cilindros de GLP por un monto igual a $163,895,458 COP.
- Costo de Capital igual a 30 % anual.

Los resultados obtenidos se muestran a continuación, de igual forma en el anexo 2 se muestran de forma detallada.

<table>
<thead>
<tr>
<th>Tabla 12. Variables Financieras – Sin Proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN Proyecto</td>
</tr>
<tr>
<td>VPN (COP)</td>
</tr>
<tr>
<td>$ (658‘696,066)</td>
</tr>
</tbody>
</table>

Se parte de un VPN (Valor presente neto) negativo, ya que actualmente se compra el gas propano necesario para el cocinador, con la análisis del proyecto propuesto se evaluará si se obtienen mejores resultados.

4.2.2 Operación remplazando GLP por Biogás (con proyecto)

El flujo de caja con proyecto se realizó bajo las siguientes pautas:

- Tiempo de operación igual a nueve años; debido a que el tiempo de vida útil del biodigestor en el peor de los escenarios es de 3 años (11) (17) (18).
- No se considera inversión en tierra puesto que la Granja Bellavista-Horizonte cuenta con suficiente espacio para la instalación y adecuación del Biodigestor.
- Costos de Operación:
 - Dos (2) técnicos con ingresos mensuales de $ 1’366,700 COP cada uno (incluye prestaciones de ley e incremento anual de 3,5% correspondiente al IPC del año 2014).
- Mantenimiento anual del Cocinador por valor de $ 2’000.000 COP.
- Costo total de consumo de agua es de COP $420.000 ($2294/m³)

- Inversión en maquinaria $ 3´639.349 COP
- Inversión en Instalaciones y obra civil $ 14´829.997 COP
- Los ingresos en el flujo de caja son el ahorro en cuanto al consumo de GLP se refiere (este dinero se ahorraría con la implementación del sistema) $163´895.458 COP.
- Debido a que el tiempo de vida útil del Biodigestor es igual a 3 años se reconsideraron hacer reinversiones en maquinaria en el periodo 3 y en el periodo 6 por un monto igual a la inversión en maquinaria.
- Adicionalmente en los periodos 4 y 7 se hace uso del GLP nuevamente por un espacio de tiempo de 60 días mientras el biodigestor instalado inicia la producción del biogás. Esta pauta obliga a incrementar los costos de operación en dichos periodos en $ 26´941.719 COP.
- La inversión se realizará con recursos propios, ya que este costo representa solo el 10% del monto anual destinado a la compra del GLP.
- Valor de salvamento igual a $ 0,0 COP
- Costo de Capital igual a 30 % anual.

Los resultados obtenidos se muestran a continuación, de igual forma en el anexo 3 se muestran de forma detallada

Tabla 13. Variables Financieras – Con Proyecto

<table>
<thead>
<tr>
<th>CON Proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR</td>
</tr>
<tr>
<td>VPN (COP)</td>
</tr>
<tr>
<td>Max Endeudamiento</td>
</tr>
</tbody>
</table>

Se presenta un VPN positivo (+) de COP 100 millones aproximadamente, se puede observar que el proyecto recupera la inversión en el primer año;
adicionalmente el máximo endeudamiento es de COP 18 millones aproximadamente.

4.2.3 Operación remplazando GLP por Biogás y venta de gallinaza (con proyecto)

Adicionalmente, se evaluó un escenario en el cual se realiza la comercialización de la gallinaza y la bobinaza.

- El costo de la gallinaza y bobinaza es de $300/kg.
- El consumo de gallinaza y bobinaza para producción de biogás es del 17 y 13% respectivamente.

Bajo estas dos últimas consideraciones fue posible obtener un VPN y una TIR, las cuales presentaron el siguiente resultado:

| Tabla 14. Variables Financieras – Con Proyecto y Venta Gallinaza |
|-------------------|-----------------|
| **CON Proyecto / Venta Gallinaza** | |
| TIR | 565% |
| VPN (COP) | $ 279'874,570 |
| Max Endeudamiento | $ (18’469,346) |

En el anexo 4 se muestra de forma detallada el flujo de caja.

En este escenario se obtiene un VPN positivo (+) desde el primer periodo de operación, ya que la inversión realizada inicialmente es pagada con el ahorro generado al no comprar cilindros de GLP. Por lo tanto es un proyecto viable ya que el biogás obtenido presenta un menor costo que si se continuara comprando los cilindros de propano (GLP).
4.3 SENSIBILIDAD FINANCIERA DEL PROYECTO

Switching Values

Las variables analizadas que permitirían obtener un Valor Presente Neto (VPN) igual a cero haciendo uso del Biogás en el cocinador de la Granja Bellavista-Horizonte, son evaluadas a continuación:

- **Costo del GLP**

![SWITCHING VALUE - COSTO GLP](image)

Figura 8. Switching Value – Costos GLP

Se analiza la posibilidad de reducción del costo del GLP, actualmente es de **$163'895.458 COP anual**. Para que el VPN tenga un valor de cero, se debe presentar una reducción en el costo del GLP del **27,7%** y alcanzando así un valor de **$118'454,994 COP anual**.
• **Costos de operación**

Se evalúa la variación en los costos de operación (incluye mantenimiento, consumo de agua y compra y transporte de bobinaza). El VPN es cero con un aumento del 75% de este costo; es decir pasando de COP **$67’244.000** a COP **$118’440.000**.
CONCLUSIONES

✓ De acuerdo a las alternativas presentadas, es viable financieramente remplazar el gas propano (GLP) utilizado en el horno cocinador por biogás producido a partir de la gallinaza generada en la Granja Bellavista perteneciente a la incubadora de Santander.

✓ Si se tiene cuenta el ahorro en la compra de cilindros de GLP para el funcionamiento del cocinador, la inversión en instalación y puesta en marcha del sistema para producción de biogás se recupera en el primer año de operación.

✓ La variable que genera mayor sensibilidad al proyecto es precio de venta del GLP, puesto que si este disminuye un 27.7% se obtiene un VPN igual a cero.

✓ Luego de revalidar el diseño del biodigestor, se comprueba que el volumen de este es de 60 m³ aproximadamente.

✓ La producción de biogás a partir de gallinaza contribuye a contrarrestar el avance del calentamiento global por la presencia de gases efecto invernadero, puesto que la combustión del metano permite liberar CO₂ a la atmósfera el cual es un gas con un potencial de calentamiento muy inferior al producido por la presencia de metano.

✓ El departamento de Santander cuenta con un alto potencial para la implementación de sistemas de producción de biogás a partir de gallinaza generada en el sector avícola; esto permitiría aumentar la competitividad del sector.
RECOMENDACIONES

✓ La zanja deberá construirse en una zona soleada que permita incrementar la temperatura del terreno y por ende favorecer la cinética de las reacciones, aunque el biodigestor deberá protegerse de la radiación solar y así evitar la degradación de la geomembrana.

✓ Partiendo del análisis de este proyecto, se recomienda la evaluación de alternativas utilizando biogás para la generación de energía eléctrica, y así suplir otras demandas del sector.

✓ Se recomienda adelantar estudios de viabilidad técnico-financiera para la producción de biogás utilizando únicamente como sustrato gallinaza y no una mezcla gallinaza-bobinaza, con lo cual se podrían obtener ahorro en los costos de materia prima.
BIBLIOGRAFÍA

[4]. **Escalante, Humberto, y otros.** UPME, IDEAM, Colciencias, UIS. *Atlas del potencial energético de la biomasa residual en Colombia.* 2010. 94-140.

[5]. **Sanguino Barajas, Paola y Escalante, Huberto.** Aprovechamiento Energético de la biomasa residual del secto avícola. s.l. : Revista Ion, 2009.

[21]. **Pascual, Juan.** Rediseño y ensayo de un biodigestor en la granja experimental de la Universidad Autónoma de Chapingo. Chapingo: s.n., 2011.

ANEXOS

Anexo 1. Propuesta Económica Biodigestor

ANEXO 1. Propuesta Económica Biodigestor

F - PROPUESTA ECONÓMICA

Consecutivo: N-15.125
Fecha: 25 de marzo de 2015
Cliente: GRUPO DE INVESTIGACIÓN - UNAB
NIT: 880.001.567-6

Nombre: ANDERSON MARTÍNEZ REMOLINA
Cargo: Técnico
Dirección: BUCARAMANGA
Teléfono: 314 376 8640
Mail: amartinez395@uni.edu.co

Artículo: BIODIGESTOR
Logotipo: N/A

Dimensiones: 2.20 x 1.8
Largo: 15.60 m
Diametro: 2.20 m

Características de la Estructura:
NO APLICA

Características de la Lona:
Geomembrana PVC GEOVINIL® Geomembrana reforzada, con espesor de fibra de poliéster de alta tenacidad, con recubrimiento por ambas caras en una película de PVC y activos, lo que genera protección al hongos, resistencia a diversos productos químicos, resistencia a rayos solares, especialmente diseñados para Biodigestores.

Esta foto es solo una referencia para mayor claridad de la cotización.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Valor Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodigestor Largo 15.6 m x 2.2 m de Diametro.</td>
<td>1</td>
<td>$2.734.000</td>
<td>$2.734.000</td>
</tr>
</tbody>
</table>

Nota: Incluye transporte a las principales ciudades del país. No incluye instalación.

Subtotal: $2.734.069
IVA (16%): $437.440
Total: $3.171.449

<table>
<thead>
<tr>
<th>CONDICIONES COMERCIALES</th>
<th>MANTENIMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forma de pago: Contacto 50% adelanto 50% al despacho.</td>
<td>Lavar con agua y jabón a base de susavas. No lavar con detergentes ni blanqueadores.</td>
</tr>
<tr>
<td>Tiempo de Entrega 8 días hábiles después de la O.C y anticipado.</td>
<td>Evitar contacto con sustancias químicas.</td>
</tr>
<tr>
<td>Lugar Entrega: Bucaramanga</td>
<td>Guardar el producto limpio y seco.</td>
</tr>
<tr>
<td>Validez de la Oferta 30 días</td>
<td>No enrescar durante su manipulación.</td>
</tr>
<tr>
<td>Garantía 1 año, por defectos de fabricación</td>
<td>Requiere de limpieza y mantenimiento.</td>
</tr>
</tbody>
</table>

Observaciones: SóLOMOS AUTORREPARABLES

Medellín: Tel. 205 2079 – Fax: 361 2316
Bucaramanga: Tel. 676 0165 – Tel. Fax: 676 0162
Bogotá: Tel. 239 3725 – Fax: 360 1334
Itagüí: Tel. 500 0173 – 066 0309 – 600 0306
Barranquilla: Tel. 312 2440 0172 – Fax: 302 0336
Cali: Tel. 312 2234 2234 – Fax: 312 2235 2235
Anexo 2. Flujo de Caja SIN Proyecto

<table>
<thead>
<tr>
<th>Concepto</th>
<th>0 (COP)</th>
<th>1 (COP)</th>
<th>2 (COP)</th>
<th>3 (COP)</th>
<th>4 (COP)</th>
<th>5 (COP)</th>
<th>6 (COP)</th>
<th>7 (COP)</th>
<th>8 (COP)</th>
<th>9 (COP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingresos Ventas</td>
<td>$</td>
</tr>
<tr>
<td>Costos de Operación</td>
<td>$ (163,895,458.00)</td>
</tr>
<tr>
<td>Depreciación</td>
<td>$ -</td>
</tr>
<tr>
<td>Ganancias Operativas Gravables</td>
<td>$ (163,895,458.00)</td>
</tr>
<tr>
<td>Impuesto a la renta</td>
<td>$ -</td>
</tr>
<tr>
<td>Ganancias Netas Contables</td>
<td>$ (163,895,458.00)</td>
</tr>
<tr>
<td>Depreciación</td>
<td>$ -</td>
</tr>
<tr>
<td>Flujo de Fondos Neto</td>
<td>$ (163,895,458.00)</td>
</tr>
</tbody>
</table>

Anexo 3. Flujo de Caja CON Proyecto / Reemplazo GLP por Biogás

<table>
<thead>
<tr>
<th>Concepto</th>
<th>0 (COP)</th>
<th>1 (COP)</th>
<th>2 (COP)</th>
<th>3 (COP)</th>
<th>4 (COP)</th>
<th>5 (COP)</th>
<th>6 (COP)</th>
<th>7 (COP)</th>
<th>8 (COP)</th>
<th>9 (COP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo del Capital</td>
<td>$</td>
</tr>
<tr>
<td>Inversiones Maquinaria</td>
<td>$ 3,639,349.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vida útil</td>
<td>3</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Valor de Salvamento Maquinaria</td>
<td>$ -</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Inversiones en Instalaciones</td>
<td>$ 14,829,997.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impuesto a la renta</td>
<td>$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concepto</th>
<th>0 (COP)</th>
<th>1 (COP)</th>
<th>2 (COP)</th>
<th>3 (COP)</th>
<th>4 (COP)</th>
<th>5 (COP)</th>
<th>6 (COP)</th>
<th>7 (COP)</th>
<th>8 (COP)</th>
<th>9 (COP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Ahorro en Compra de GLP</td>
<td>$</td>
</tr>
<tr>
<td>Costos de Operación (Opcional)</td>
<td>$</td>
</tr>
<tr>
<td>Costos de Operación (Mantenimiento)</td>
<td>$</td>
</tr>
<tr>
<td>Costos de Operación (Consumo Agua)</td>
<td>$</td>
</tr>
<tr>
<td>Costos de Operación (GLP)</td>
<td>$</td>
</tr>
<tr>
<td>Costos de Operación (Bovina)</td>
<td>$</td>
</tr>
<tr>
<td>Depreciación</td>
<td>$</td>
</tr>
<tr>
<td>Ganancias Operativas Gravables</td>
<td>$</td>
</tr>
<tr>
<td>Impuesto a la renta</td>
<td>$</td>
</tr>
<tr>
<td>Ganancias Netas Contables</td>
<td>$</td>
</tr>
<tr>
<td>Costos de Inversión</td>
<td>$ (18,469,346.00)</td>
</tr>
<tr>
<td>Flujo de Fondos Neto</td>
<td>$ (18,469,346.00)</td>
</tr>
</tbody>
</table>
Anexo 4. Flujo de Caja CON Proyecto / Reemplazo GLP por Biogás y Venta de Gallinaza

<table>
<thead>
<tr>
<th>Concepto</th>
<th>0 (COP)</th>
<th>1 (COP)</th>
<th>2 (COP)</th>
<th>3 (COP)</th>
<th>4 (COP)</th>
<th>5 (COP)</th>
<th>6 (COP)</th>
<th>7 (COP)</th>
<th>8 (COP)</th>
<th>9 (COP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Ahorro en Compra de GLP</td>
<td></td>
</tr>
<tr>
<td>Inversiones Maquinaria</td>
<td>3,639,349,00</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vida útil</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor de Salvamento Maquinaria</td>
<td>$ -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversiones en Instalaciones</td>
<td>14,829,997,00</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impuesto a la renta</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo del Capital</td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inversiones Maquinaria
- Inversiones Maquinaria: $3,639,349,00
- Vida útil: 3 años
- Valor de Salvamento Maquinaria: $-
- Inversiones en Instalaciones: $14,829,997,00
- Impuesto a la renta: 33%

Conceptos de Flujo de Caja

<table>
<thead>
<tr>
<th>Concepto</th>
<th>0 (COP)</th>
<th>1 (COP)</th>
<th>2 (COP)</th>
<th>3 (COP)</th>
<th>4 (COP)</th>
<th>5 (COP)</th>
<th>6 (COP)</th>
<th>7 (COP)</th>
<th>8 (COP)</th>
<th>9 (COP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Costos de Operación (Operarios)</td>
<td>$ -</td>
<td>$(32,800,800)</td>
<td>$(33,948,828)</td>
<td>$(35,137,036)</td>
<td>$(36,366,833)</td>
<td>$(37,639,672)</td>
<td>$(38,957,060)</td>
<td>$(40,320,558)</td>
<td>$(41,731,777)</td>
<td>$(43,192,389)</td>
</tr>
<tr>
<td>- Costos de Operación (Mantenimiento)</td>
<td>$ -</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
<td>$(2,000,000)</td>
</tr>
<tr>
<td>- Costos de Operación (Consumo Agua)</td>
<td>$ -</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
<td>$(420,000)</td>
</tr>
<tr>
<td>- Costos de Operación (GLP)</td>
<td>$ -</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
<td>$(26,941,719)</td>
</tr>
<tr>
<td>- Costos de Operación (Bovinaza)</td>
<td>$ -</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
<td>$(64,824,000)</td>
</tr>
<tr>
<td>Depreciación</td>
<td>$ -</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
<td>$(1,213,116.33)</td>
</tr>
<tr>
<td>+ Costos de Inversión</td>
<td>$18,469,346</td>
<td>$ -</td>
<td>$ -</td>
<td>$(3,639,349)</td>
<td>$ -</td>
<td>$ -</td>
<td>$(3,639,349)</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>- Flujo de Fondos Neto</td>
<td>$18,469,346</td>
<td>$104,629,346</td>
<td>$103,860,167</td>
<td>$99,424,718</td>
<td>$84,189,152</td>
<td>$101,387,301</td>
<td>$96,865,302</td>
<td>$81,540,156</td>
<td>$98,645,591</td>
<td>$97,666,980</td>
</tr>
</tbody>
</table>

Costos de Inversión
- Costos de Inversión: $(18,469,346)

Flujo de Fondos Neto
- Flujo de Fondos Neto: $(18,469,346)